SPH 247	Statistical Analysis of	David M. Rocke
Spring 2015	Laboratory Data	March 31, 2015

Course Information

Class Meetings: Lab:	Tuesdays 8:00am–11:00am, 1444 CTSC Tuesdays 11:00am-12:00pm, 1444 CTSC
Office Hours: Office:	By appointment. 140B Med Sci 1C (530-752-6999) or at the CTSC FAX: 530-752-3239 e-mail: <u>dmrocke@ucdavis.edu</u> web site: http://dmrocke.ucdavis.edu/
Text:	None. Lectures, notes, and data sets posted on line.
Computer	Please bring a laptop to class, OS X, Windows, or Linux should all be fine. A few of the data sets will be large (up to several gigabytes). We will mostly use R for the analysis.
Course Grading:	Lean on <u>Iconwork</u> Letter Grades based on Homework Class Attendance Class Participation
Class Dates	March 31 April 7, 14, 21, 28 May 5, 12, 19, 26 June 2
Prerequisites	SPH 245 and SPH 246 or the equivalent.

This course is an introduction to statistical methods for experimental design and analysis of data in a laboratory context, as against in a clinical or population context. We will cover methods for one-variable analysis, as in Western blots or PCR, as well as high-throughput techniques such as gene expression arrays and RNA-Seq. Statistical methods will range from interlaboratory studies to clustering and multivariate analysis.

Tentative Topical Outline

- I. Experimental Design
- II. Random and Mixed Effects Models
- III. Assay Measurement
 - A. Calibration
 - B. Standardization
 - C. Normalization
 - D. Detection limits
 - E. Variance, Standard Deviation, and Coefficient of Variation
 - F. Error models
 - G. Interlaboratory studies
 - H. Intralaboratory studies
- IV. Survey of Instrumental Methods
 - A. Mass Spectrometry
 - B. Arrays
 - C. RNA-Seq
 - D. NMR Spectroscopy
 - E. ELISA and similar assays (Luminex)
 - F. PCR
 - G. Westerns, etc.
- V. Significance, Prediction, and Classification
- VI. Generalized linear models and RNA-Seq
- VII. Multivariate analysis
- VIII. GO and annotation
- IX. Expression arrays and RNA-Seq
- X. Gene expression analysis with R
- XI. Gene groups, pathways, and inference
- XII. Reproducible Research